Back to Blog
AITutorialsRN

How to Integrate AI Into a React Native App (2025 Guide)

Step-by-step guide to integrating AI features into React Native apps. Learn how to add ChatGPT, Claude, and other AI providers with streaming responses, error handling, and production-ready patterns.

To integrate AI into a React Native app, you need three components: a frontend UI for user interaction, an API endpoint to securely handle API keys and make AI provider calls (OpenAI, Anthropic, Groq), and a streaming response handler to display results in real-time. This architecture keeps API keys secure on the backend while providing a responsive user experience on mobile devices.

What does AI integration in React Native actually mean?

AI integration means connecting your mobile app to AI services like OpenAI's GPT, Anthropic's Claude, or Google's Gemini to add intelligent features:

  • Conversational interfaces: Chat with AI instead of filling forms
  • Image analysis: Classify photos, extract text, identify objects
  • Content generation: Summaries, translations, creative writing
  • Smart recommendations: Personalized suggestions based on context
  • Voice interactions: Speech-to-text and text-to-speech

Unlike web apps where you can call AI APIs directly from the browser (with careful security), mobile apps require a backend proxy to protect API keys from reverse engineering.

Why you need a backend proxy for AI in React Native

React Native apps compile to native binaries distributed through app stores. This creates a security problem:

The security risk

If you embed API keys directly in your React Native code:

  • Anyone can extract them using tools like apktool (Android) or class-dump (iOS)
  • Your keys will be used by others, costing you thousands in API charges
  • You cannot rotate keys without releasing a new app version

The solution: Backend proxy

Your React Native app calls your own API endpoint, which then calls the AI provider:

Mobile App → Your Backend → AI Provider (OpenAI/Anthropic)

Benefits:
- API keys stay secret on your server
- Add authentication/rate limiting per user
- Switch AI providers without app updates
- Track usage and costs per user

Step-by-step: Adding AI chat to React Native

Step 1: Set up your backend API endpoint

Create an API route that accepts messages and streams AI responses. Here's an example using Next.js API routes (works with Vercel, Netlify, or any Node.js host):

// /api/chat/route.ts
import OpenAI from 'openai';

export async function POST(req: Request) {
  const { messages } = await req.json();

  const openai = new OpenAI({
    apiKey: process.env.OPENAI_API_KEY, // Stored securely on server
  });

  const stream = await openai.chat.completions.create({
    model: 'gpt-4o',
    messages: messages,
    stream: true,
  });

  // Create a readable stream to send to client
  const encoder = new TextEncoder();
  const readable = new ReadableStream({
    async start(controller) {
      for await (const chunk of stream) {
        const text = chunk.choices[0]?.delta?.content || '';
        controller.enqueue(encoder.encode(text));
      }
      controller.close();
    },
  });

  return new Response(readable, {
    headers: { 'Content-Type': 'text/plain' },
  });
}

Step 2: Create the React Native chat UI

Build a simple chat interface with message bubbles and input:

// ChatScreen.tsx
import { useState } from 'react';
import { View, TextInput, FlatList, Text } from 'react-native';

type Message = {
  role: 'user' | 'assistant';
  content: string;
};

export function ChatScreen() {
  const [messages, setMessages] = useState<Message[]>([]);
  const [input, setInput] = useState('');
  const [loading, setLoading] = useState(false);

  return (
    <View style={{ flex: 1 }}>
      <FlatList
        data={messages}
        renderItem={({ item }) => (
          <View style={{
            alignSelf: item.role === 'user' ? 'flex-end' : 'flex-start',
            backgroundColor: item.role === 'user' ? '#007AFF' : '#E5E5EA',
            padding: 12,
            borderRadius: 16,
            margin: 8,
            maxWidth: '80%',
          }}>
            <Text style={{
              color: item.role === 'user' ? 'white' : 'black',
            }}>
              {item.content}
            </Text>
          </View>
        )}
        keyExtractor={(_, index) => index.toString()}
      />

      <TextInput
        value={input}
        onChangeText={setInput}
        placeholder="Type a message..."
        style={{
          borderWidth: 1,
          borderColor: '#ccc',
          borderRadius: 20,
          padding: 12,
          margin: 8,
        }}
        onSubmitEditing={() => sendMessage(input)}
      />
    </View>
  );
}

Step 3: Implement streaming response handler

Add the function to call your API and handle streaming responses:

async function sendMessage(userMessage: string) {
  if (!userMessage.trim()) return;

  setLoading(true);
  const newMessages = [...messages, { role: 'user', content: userMessage }];
  setMessages(newMessages);
  setInput('');

  try {
    const response = await fetch('https://your-api.com/api/chat', {
      method: 'POST',
      headers: { 'Content-Type': 'application/json' },
      body: JSON.stringify({ messages: newMessages }),
    });

    if (!response.body) throw new Error('No response body');

    const reader = response.body.getReader();
    const decoder = new TextDecoder();
    let assistantMessage = '';

    // Add empty assistant message that we'll update
    setMessages([...newMessages, { role: 'assistant', content: '' }]);

    while (true) {
      const { done, value } = await reader.read();
      if (done) break;

      const chunk = decoder.decode(value);
      assistantMessage += chunk;

      // Update the last message with new content
      setMessages([
        ...newMessages,
        { role: 'assistant', content: assistantMessage }
      ]);
    }
  } catch (error) {
    console.error('AI request failed:', error);
    setMessages([
      ...newMessages,
      { role: 'assistant', content: 'Sorry, I encountered an error. Please try again.' }
    ]);
  } finally {
    setLoading(false);
  }
}

How to add vision AI (image analysis) to React Native

Step 1: Add camera/photo access

Use Expo's image picker for easy photo selection:

import * as ImagePicker from 'expo-image-picker';

async function pickImage() {
  const result = await ImagePicker.launchImageLibraryAsync({
    mediaTypes: ImagePicker.MediaTypeOptions.Images,
    quality: 0.8,
    base64: true, // We need base64 for AI APIs
  });

  if (!result.canceled) {
    analyzeImage(result.assets[0].base64);
  }
}

Step 2: Send image to AI with prompt

async function analyzeImage(base64Image: string) {
  const response = await fetch('https://your-api.com/api/vision', {
    method: 'POST',
    headers: { 'Content-Type': 'application/json' },
    body: JSON.stringify({
      image: base64Image,
      prompt: 'Describe this image in detail',
    }),
  });

  const data = await response.json();
  console.log('AI analysis:', data.description);
}

Step 3: Backend vision endpoint

// /api/vision/route.ts
import OpenAI from 'openai';

export async function POST(req: Request) {
  const { image, prompt } = await req.json();

  const openai = new OpenAI({
    apiKey: process.env.OPENAI_API_KEY,
  });

  const response = await openai.chat.completions.create({
    model: 'gpt-4o',
    messages: [
      {
        role: 'user',
        content: [
          { type: 'text', text: prompt },
          {
            type: 'image_url',
            image_url: { url: `data:image/jpeg;base64,${image}` }
          },
        ],
      },
    ],
  });

  return Response.json({
    description: response.choices[0].message.content,
  });
}

Best practices for production AI in React Native

1. Implement proper error handling

AI APIs fail frequently due to rate limits, timeouts, or invalid responses. Always wrap AI calls in try-catch blocks and provide user-friendly error messages:

const ERROR_MESSAGES = {
  RATE_LIMIT: 'Too many requests. Please wait a moment.',
  TIMEOUT: 'Request took too long. Please try again.',
  NETWORK: 'No internet connection. Please check your network.',
  UNKNOWN: 'Something went wrong. Please try again.',
};

async function callAI() {
  try {
    // ... AI call
  } catch (error) {
    if (error.status === 429) {
      showError(ERROR_MESSAGES.RATE_LIMIT);
    } else if (error.code === 'ECONNABORTED') {
      showError(ERROR_MESSAGES.TIMEOUT);
    } else {
      showError(ERROR_MESSAGES.UNKNOWN);
    }
  }
}

2. Add request cancellation

Users should be able to cancel long AI responses:

const [abortController, setAbortController] = useState<AbortController | null>(null);

function cancelRequest() {
  abortController?.abort();
  setAbortController(null);
}

async function sendMessage(message: string) {
  const controller = new AbortController();
  setAbortController(controller);

  const response = await fetch('/api/chat', {
    method: 'POST',
    signal: controller.signal,
    // ...
  });
}

3. Track costs per user

AI usage can get expensive. Track token usage and set limits:

// Backend: Log usage after each request
await db.usage.create({
  userId: user.id,
  model: 'gpt-4o',
  inputTokens: response.usage.prompt_tokens,
  outputTokens: response.usage.completion_tokens,
  cost: calculateCost(response.usage),
  timestamp: new Date(),
});

// Check user limits before processing
const monthlyUsage = await getUserMonthlyUsage(user.id);
if (monthlyUsage > MAX_MONTHLY_COST) {
  return Response.json({ error: 'Monthly limit reached' }, { status: 429 });
}

4. Cache common responses

For repeated queries, cache responses to save costs and improve speed:

// Simple cache with TTL
const cache = new Map();

async function getCachedAIResponse(prompt: string) {
  const cacheKey = hashPrompt(prompt);
  const cached = cache.get(cacheKey);

  if (cached && Date.now() - cached.timestamp < 3600000) { // 1 hour
    return cached.response;
  }

  const response = await callAI(prompt);
  cache.set(cacheKey, { response, timestamp: Date.now() });
  return response;
}

5. Add authentication and rate limiting

Protect your API from abuse:

// Middleware to check auth and rate limits
export async function middleware(req: Request) {
  const token = req.headers.get('Authorization');
  const user = await verifyToken(token);

  if (!user) {
    return Response.json({ error: 'Unauthorized' }, { status: 401 });
  }

  // Check rate limit (e.g., 100 requests per hour)
  const requestCount = await redis.incr(`ratelimit:${user.id}:${Date.now()}`);
  if (requestCount > 100) {
    return Response.json({ error: 'Rate limit exceeded' }, { status: 429 });
  }

  return NextResponse.next();
}

Common mistakes when integrating AI in React Native

Mistake #1: Storing API keys in the app

Never put API keys in your React Native code, environment variables, or config files. They will be extracted and abused. Always use a backend proxy.

Mistake #2: Not handling streaming properly

Buffering the entire AI response before displaying causes poor UX. Users expect to see text appearing in real-time. Implement streaming from the start.

Mistake #3: Ignoring context window limits

AI models have token limits (e.g., GPT-4o: 128K tokens). Long conversations will exceed this. Implement automatic truncation or summarization.

Mistake #4: Poor offline handling

AI requires internet. Detect offline state before making requests and show appropriate UI. Don't let requests hang indefinitely.

Mistake #5: No loading states

AI responses can take 5-30 seconds. Show clear loading indicators, allow cancellation, and display estimated wait times.

How AI Mobile Launcher simplifies AI integration

Building all of this from scratch takes 4-8 weeks. AI Mobile Launcher provides production-ready modules that handle everything:

Chat Module

  • Streaming responses with automatic token buffering
  • Multi-provider support (OpenAI, Anthropic, Groq, local models)
  • Context window management and automatic truncation
  • Request cancellation and retry logic
  • Cost tracking per conversation
  • Beautiful chat UI optimized for mobile

Vision Module

  • Camera integration with Expo
  • Image preprocessing (resize, compress)
  • Multi-provider vision APIs (GPT-4o, Claude 3.5 Sonnet)
  • OCR and text extraction
  • On-device ML for offline processing

Backend Templates

  • Next.js API routes with streaming support
  • Authentication and rate limiting included
  • Cost tracking and usage analytics
  • Error handling and logging

Every module works out of the box. Just configure your API keys and start building features.

Testing AI features in React Native

1. Test with mock responses first

Don't waste API credits during development. Mock AI responses:

const MOCK_MODE = __DEV__ && false; // Enable for testing

async function callAI(prompt: string) {
  if (MOCK_MODE) {
    return simulateStreamingResponse('This is a mock AI response...');
  }
  return actualAICall(prompt);
}

2. Test error scenarios

Simulate failures to ensure your error handling works:

  • Network offline
  • Rate limit exceeded (429 error)
  • Timeout after 30 seconds
  • Invalid API response format
  • Cancelled request

3. Test on real devices, not just simulators

Network conditions differ on real devices. Test with:

  • Slow 3G connection
  • WiFi with packet loss
  • Switching between WiFi and cellular
  • Background app state

For Developers: Skip the setup complexity. AI Mobile Launcher includes production-ready AI integration modules that work immediately. Get Chat, Vision, and RAG features in minutes, not months.

For Founders: Need a custom AI mobile app built fast? CasaInnov specializes in AI-powered React Native apps using AI Mobile Launcher. We deliver production-ready apps in 6-8 weeks with transparent pricing.