How to Add Vision AI to a React Native App Using Expo
Complete guide to adding image recognition, OCR, and vision AI features to React Native apps. GPT-4 Vision, Google Cloud Vision, and on-device ML.
Related reading
How to Build a Mobile RAG Application in React Native
Complete guide to building Retrieval Augmented Generation (RAG) apps in React Native. Learn document processing, embeddings, vector search, and AI-powered Q&A for mobile devices.
How to Integrate AI Into a React Native App (2025 Guide)
Step-by-step guide to integrating AI features into React Native apps. Learn how to add ChatGPT, Claude, and other AI providers with streaming responses, error handling, and production-ready patterns.
Why AI Starter Kits Will Replace Traditional Boilerplates
Traditional mobile boilerplates are becoming obsolete. Discover why AI-powered starter kits with pre-built modules, intelligent features, and plug-and-play architecture are the future of mobile development.
How do you add Vision AI to a React Native app?
Add Vision AI to React Native by integrating Expo Camera with GPT-4 Vision or Google Cloud Vision API. Process images locally with TensorFlow.js or send to cloud APIs for analysis. AI Mobile Launcher's Vision Pack provides ready-to-use image classification, OCR, and object detection modules that work both online and offline.
Vision AI transforms mobile apps with powerful capabilities: image classification, object detection, OCR, facial analysis, and more. This guide covers implementation from simple cloud-based solutions to advanced on-device processing.
What Vision AI features can you add to mobile apps?
- Image Classification - Identify objects, scenes, and categories in photos
- Object Detection - Locate and label multiple objects with bounding boxes
- OCR (Text Recognition) - Extract text from images and documents
- Face Detection & Analysis - Detect faces and analyze expressions
- Image Generation - Create images with DALL-E or Stable Diffusion
- Visual Q&A - Answer questions about images using GPT-4 Vision
How do you capture images with Expo Camera?
First, set up Expo Camera to capture images for AI processing:
// Install dependencies
npx expo install expo-camera expo-image-picker expo-file-system
// CameraCapture.tsx
import { CameraView, useCameraPermissions } from 'expo-camera';
import { useState, useRef } from 'react';
import { View, TouchableOpacity, Text, Image } from 'react-native';
export function VisionAICamera() {
const [permission, requestPermission] = useCameraPermissions();
const [capturedImage, setCapturedImage] = useState<string | null>(null);
const cameraRef = useRef<CameraView>(null);
const captureImage = async () => {
if (cameraRef.current) {
const photo = await cameraRef.current.takePictureAsync({
base64: true, // Include base64 for API calls
quality: 0.8, // Balance quality vs size
});
setCapturedImage(photo.uri);
// Send to Vision AI
await analyzeWithVisionAI(photo.base64);
}
};
if (!permission?.granted) {
return (
<View>
<Text>Camera access required</Text>
<TouchableOpacity onPress={requestPermission}>
<Text>Grant Permission</Text>
</TouchableOpacity>
</View>
);
}
return (
<View style={{ flex: 1 }}>
<CameraView ref={cameraRef} style={{ flex: 1 }}>
<TouchableOpacity onPress={captureImage}>
<Text>Capture & Analyze</Text>
</TouchableOpacity>
</CameraView>
</View>
);
}How do you integrate GPT-4 Vision for image analysis?
GPT-4 Vision provides the most versatile image understanding:
// services/visionAI.ts
import OpenAI from 'openai';
const openai = new OpenAI({
apiKey: process.env.OPENAI_API_KEY,
});
interface VisionAnalysisResult {
description: string;
objects: string[];
text?: string;
confidence: number;
}
export async function analyzeImageWithGPT4V(
imageBase64: string,
prompt: string = 'Describe this image in detail'
): Promise<VisionAnalysisResult> {
const response = await openai.chat.completions.create({
model: 'gpt-4-vision-preview',
messages: [
{
role: 'user',
content: [
{ type: 'text', text: prompt },
{
type: 'image_url',
image_url: {
url: `data:image/jpeg;base64,${imageBase64}`,
detail: 'high', // or 'low' for faster/cheaper
},
},
],
},
],
max_tokens: 500,
});
return {
description: response.choices[0].message.content || '',
objects: extractObjects(response.choices[0].message.content),
confidence: 0.95,
};
}
// Specialized prompts for different use cases
export const VISION_PROMPTS = {
productIdentification:
'Identify the product in this image. Return: name, brand, category, and estimated price.',
documentOCR:
'Extract all text from this document. Preserve formatting and structure.',
foodAnalysis:
'Identify the food items and estimate nutritional information (calories, protein, carbs, fat).',
plantIdentification:
'Identify this plant. Return: common name, scientific name, care instructions.',
};How do you use Google Cloud Vision API?
Google Cloud Vision offers specialized detection features:
// services/googleVision.ts
interface GoogleVisionResult {
labels: Array<{ description: string; score: number }>;
text?: string;
faces?: Array<{ joy: string; sorrow: string; anger: string }>;
objects?: Array<{ name: string; confidence: number }>;
}
export async function analyzeWithGoogleVision(
imageBase64: string,
features: string[] = ['LABEL_DETECTION', 'TEXT_DETECTION']
): Promise<GoogleVisionResult> {
const response = await fetch(
`https://vision.googleapis.com/v1/images:annotate?key=${process.env.GOOGLE_VISION_KEY}`,
{
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
requests: [
{
image: { content: imageBase64 },
features: features.map(type => ({ type, maxResults: 10 })),
},
],
}),
}
);
const data = await response.json();
return parseGoogleVisionResponse(data.responses[0]);
}
// Feature types available:
// LABEL_DETECTION - Object/scene labels
// TEXT_DETECTION - OCR
// FACE_DETECTION - Face analysis
// OBJECT_LOCALIZATION - Object bounding boxes
// LOGO_DETECTION - Brand logos
// LANDMARK_DETECTION - Famous landmarks
// SAFE_SEARCH_DETECTION - Content moderationHow do you implement on-device Vision AI?
For privacy and offline support, use TensorFlow.js or ONNX:
// Install TensorFlow.js for React Native
npm install @tensorflow/tfjs @tensorflow/tfjs-react-native
npm install @tensorflow-models/mobilenet
// services/localVision.ts
import * as tf from '@tensorflow/tfjs';
import '@tensorflow/tfjs-react-native';
import * as mobilenet from '@tensorflow-models/mobilenet';
let model: mobilenet.MobileNet | null = null;
export async function initializeLocalVision() {
await tf.ready();
model = await mobilenet.load({
version: 2,
alpha: 1.0,
});
console.log('Local Vision AI ready');
}
export async function classifyImageLocally(
imageTensor: tf.Tensor3D
): Promise<Array<{ className: string; probability: number }>> {
if (!model) {
throw new Error('Model not initialized');
}
const predictions = await model.classify(imageTensor);
return predictions.map(p => ({
className: p.className,
probability: p.probability,
}));
}
// Convert image to tensor
export async function imageToTensor(imageUri: string): Promise<tf.Tensor3D> {
const response = await fetch(imageUri);
const imageData = await response.arrayBuffer();
const imageTensor = tf.node.decodeImage(new Uint8Array(imageData), 3);
return imageTensor as tf.Tensor3D;
}What are real-world Vision AI use cases?
- E-commerce - Visual product search, virtual try-on, price comparison
- Healthcare - Medical image analysis, skin condition detection, pill identification
- Food & Nutrition - Calorie estimation, ingredient recognition, recipe suggestions
- Education - Homework help, math problem solving, document scanning
- Accessibility - Scene description for visually impaired users
- Agriculture - Plant disease detection, crop monitoring
People Also Ask
Is GPT-4 Vision good for mobile apps?
Yes, GPT-4 Vision is excellent for mobile apps needing flexible image understanding. It handles diverse queries but costs ~$0.01-0.03 per image. For high-volume apps, combine with on-device ML for common cases.
Can Vision AI work offline?
Yes, using TensorFlow.js or ONNX Runtime. MobileNet and EfficientNet models run on-device for classification. AI Mobile Launcher includes offline vision capabilities with optimized models.
How accurate is mobile Vision AI?
Cloud APIs (GPT-4V, Google Vision) achieve 95%+ accuracy for common objects. On-device models like MobileNet achieve 70-85% top-5 accuracy but run in under 100ms.
Add Vision AI with AI Mobile Launcher
For Developers: AI Mobile Launcher's Vision Pack includes camera integration, GPT-4 Vision, Google Cloud Vision, and offline TensorFlow.js—all pre-configured and production-ready.
For Founders: Building an app with visual AI features? Contact CasaInnov to develop your Vision AI mobile application.